
Higher-Order Demand-Driven
Symbolic Evaluation

PLUM Reading Group
Shiwei Weng, Sep 2020

Outline
● Motivation
● Demand-driven functional interpreter
● Demand-driven symbolic evaluator
● Implementation
● Current status

Motivation
● Generate tests to execute to the specified program points

Motivation
● Generate tests to execute to the specified program points

● Execute from the interested point backwards to the start point

Motivation
● Generate tests to execute to the specified program points

● Execute from the interested point backwards to the start point

● Benefit from the demand-driven technique
○ Goal-directed, backward-chain in logic programming, laziness, directed
○ Fewer spurious paths taken

Motivation
● Generate tests to execute to the specified program points

● Execute from the interested point backwards to the start point

● Benefit from the demand-driven technique
○ Goal-directed, backward-chain in logic programming, laziness, directed
○ Fewer spurious paths taken

● Continuing work of demand-driven program analysis

Outline
● Motivation
● Demand-driven functional interpreter
● Demand-driven symbolic evaluator

Demand-driven functional interpreter
● Start from the end
● No substitution, environments or closures
● Find the binding when needed

Demand-driven functional interpreter
● Start from the end (any top-level program point)
● No substitution, environments or closures
● Find Lookup the value of a variable, along (the graph of) source code
● Lookup is the interpreter

Demand-driven functional interpreter
●
●
●
●
●
●
● Lookup, 𝕃([x], @xpp, [...]) ≡ v

○ x is the variable to lookup
○ xpp is the program point to start the lookup
○ [...] is the stack of call frames

Demand-driven functional interpreter
●
●
●
●
●
●
● 𝕃([y], @y, []) ≡ 0
● 𝕃([y], @fy, []) ≡ 0
● 𝕃([fret], @fret, [fy]) ≡ 1
● 𝕃([f1], @f1, []) ≡ 2

● Lookup, 𝕃([x], @xpp, [...]) ≡ v
○ x is the variable to lookup
○ xpp is the program point to start the lookup
○ [...] is the stack of call frames

Demand-driven functional interpreter
●
●
●
●
●
●
● 𝕃([fy], @fy, [])

≡ 𝕃([fret], @fret, [fy])

● Lookup, 𝕃([x], @xpp, [...]) ≡ v
○ x is the variable to lookup
○ xpp is the program point to start the lookup
○ [...] is the stack of call frames

Demand-driven functional interpreter
●
●
●
●
●
●
● 𝕃([fy], @fy, [])

≡ 𝕃([fret], @fret, [fy])
≡ 𝕃([x], @fret, [fy]) + 1

● Lookup, 𝕃([x], @xpp, [...]) ≡ v
○ x is the variable to lookup
○ xpp is the program point to start the lookup
○ [...] is the stack of call frames

Demand-driven functional interpreter
●
●
●
●
●
●
● 𝕃([fy], @fy, [])

≡ 𝕃([fret], @fret, [fy])
≡ 𝕃([x], @fret, [fy]) + 1

● 𝕃([x], @fret, [fy])
≡ 𝕃([x], @fun x->, [fy]) ≡ 𝕃([y], @fy, [])

● Lookup, 𝕃([x], @xpp, [...]) ≡ v
○ x is the variable to lookup
○ xpp is the program point to start the lookup
○ [...] is the stack of call frames

Demand-driven functional interpreter
●
●
●
●
●
●
● 𝕃([fy], @fy, [])

≡ 𝕃([fret], @fret, [fy])
≡ 𝕃([x], @fret, [fy]) + 1

● 𝕃([x], @fret, [fy])
≡ 𝕃([x], @fun x->, [fy]) ≡ 𝕃([y], @fy, [])
≡ 𝕃([y], @f, []) ≡ 𝕃([y], @y, []) ≡ 0

● Lookup, 𝕃([x], @xpp, [...]) ≡ v
○ x is the variable to lookup
○ xpp is the program point to start the lookup
○ [...] is the stack of call frames

Demand-driven functional interpreter
●
●
●
●
●
●
● 𝕃([fy], @fy, [])

≡ 𝕃([fret], @fret, [fy])
≡ 𝕃([x], @fret, [fy]) + 1
≡ 0 + 1
≡ 1

● Lookup, 𝕃([x], @xpp, [...]) ≡ v
○ x is the variable to lookup
○ xpp is the program point to start the lookup
○ [...] is the stack of call frames

Lookup a nonlocal variable

●
●
●
●
● 𝕃([x], @gyret, [ret])

● Step 1: find the definition site for g5
Step 2: resume search for x since that is lexical scope of its definition

● Lookup, 𝕃([x], @xpp, [...]) ≡ v
○ x is the variable to lookup
○ xpp is the program point to start the lookup
○ [...] is the stack of call frames

Lookup a nonlocal variable

●
●
●
●
● 𝕃([x], @gyret, [ret])

≡ 𝕃([g5, x], @ret, [])
≡ 𝕃([gret, x], @gret, [g5])

● Step 1: find the definition site for g5

● Lookup, 𝕃([xs], @xpp, [...]) ≡ v
○ xs is the sequence of variable to lookup
○ xpp is the program point to start the lookup
○ [...] is the stack of call frames

Lookup a nonlocal variable

●
●
●
●
● 𝕃([x], @gyret, [ret])

≡ 𝕃([x], @fun x, [g5])
≡ 𝕃([5], @g5, [])
≡ 5

● Step 2: resume search for x since that is lexical scope of its definition

● Lookup, 𝕃([xs], @xpp, [...]) ≡ v
○ xs is the sequence of variable to lookup
○ xpp is the program point to start the lookup
○ [...] is the stack of call frames

Demand-driven functional interpreter
● Lookup, 𝕃([xf1, xf2, ... , x], @xpp, [...]) ≡ v
● No substitution, environments or closures
● Start from

○ the end or any toplevel program point, when we know the [...] is empty
○ Any program point, if we know the call stack

Demand-driven functional interpreter
● Lookup, 𝕃([xf1, xf2, ... , x], @xpp, [...]) ≡ v
● No substitution, environments or closures
● Start from

○ the end or any toplevel program point, when we know the [...] is empty
○ Any program point, if we know the call stack

● Support input
● Support records and recursive data structures
● Recursion encoded via self-passing (currently)
● Implemented in ANF with unique variable names

Lookup rules

From concrete to symbolic
● 𝕃([xf1, xf2, ... , x], @xpp, [...]) ≡ 𝕃(...) ≡ 𝕃(...) ≡ v

● 𝕃s([xf1, xf2, ... , x], @xpp, [...]) , 𝕃(...) , 𝕃(...) ≡ sv over Φ

From concrete to symbolic
● 𝕃([xf1, xf2, ... , x], @xpp, [...]) ≡ 𝕃(...) ≡ 𝕃(...) ≡ v

○ Deterministic v (Lemma 3.4, at most one v s.t a proof can be constructed)
○ A reverse interpreter is sound and complete with respect to a forward one

■ Need to know the call stack
■ Need to sort the input order

● 𝕃s([xf1, xf2, ... , x], @xpp, [...]) , 𝕃(...) , 𝕃(...) ≡ sv over Φ
○ Nondeterministic

■ Not know the call stack
■ Not know the input

○ Φ equationally constraints variables, must be satisfiable

Functional symbolic interpreter

● 𝕃([fy], @fy, [])
≡ 𝕃([fret], @fret, [fy])
≡ 𝕃([x], @fret, [fy]) + 1

● 𝕃([x], @fret, [fy])
≡ 𝕃([x], @fun x->, [fy])
≡ 𝕃([y], @fy, [])

Functional symbolic interpreter

● 𝕃s([fy], @fy, [])
≡ 𝕃s([fret], @fret, [fy]), Φ1

≡ 𝕃s([x], @fret, [fy]) + 1, Φ2

● 𝕃s([x], @fret, [fy])
≡ 𝕃s([x], @fun x->, [fy]), Φ3

≡ 𝕃s([y], @fy, []), Φ4

Functional symbolic interpreter

● 𝕃s([fy], @fy, [])
≡ 𝕃s([fret], @fret, [fy]), Φ1 = { []fy = [fy]fret }
≡ 𝕃s([x], @fret, [fy]) + 1, Φ2 = { ... , [fy]ret = [fy]x + 1 }

● 𝕃s([x], @fret, [fy])
≡ 𝕃s([x], @fun x->, [fy]), Φ3 = { ... }
≡ 𝕃s([y], @fy, []), Φ4 = { ... , [fy]x = []y }

Functional symbolic interpreter

● 𝕃s([fy], @fy, [])
≡ 𝕃s([fret], @fret, [fy]), Φ1 = { []fy = [fy]fret }
≡ 𝕃s([x], @fret, [fy]) + 1, Φ2 = { ... , [fy]ret = [fy]x + 1 }

● 𝕃s([x], @fret, [fy])
≡ 𝕃s([x], @fun x->, [fy]), Φ3 = { ... }
≡ 𝕃s([y], @fy, []), Φ4 = { ... , [fy]x = []y } satisfiable, not interesting

Relative stack

● 𝕃s([fy], @fy, [])
𝕃s([fret], @fret, [fy]), Φ1 = { []fy = [fy]fret }
≡ 𝕃s([x], @fret, [fy]) + 1, Φ2 = { ... , [fy]ret = [fy]x + 1 }

● 𝕃s([x], @fret, [fy])
≡ 𝕃s([x], @fun x->, [fy]), Φ3 = { ... }
≡ 𝕃s([y], @fy, []), Φ4 = { ... , [fy]x = []y } satisfiable, not interesting

Relative stack

● 𝕃s([fy], @fy, [])
𝕃s([fret], @fret, [])
≡ 𝕃s([x], @fret, []) + 1, Φ2 = { ... , []ret = []x + 1 }

● 𝕃s([x], @fret, [])
≡ 𝕃s([x], @fun x->, []), Φ3 = { ... }
≡ 𝕃s([y], @fy, [??]), Φ4 = { ... , []x = [??]y }

Relative stack

● 𝕃s([fy], @fy, [])
𝕃s([fret], @fret, [])
≡ 𝕃s([x], @fret, []) + 1, Φ2 = { ... , []ret = []x + 1 }

● 𝕃s([x], @fret, [])
≡ 𝕃s([x], @fun x->, []), Φ3 = { ... }
≡ 𝕃s([y], @fy, [-fy]), Φ4 = { ... , []x = [-fy]y }

Relative stack

● 𝕃s([fret], @fret, [])
≡ 𝕃s([x], @fret, []) + 1, Φ2 = { ... , []ret = []x + 1 }

● 𝕃s([x], @fret, [])
≡ 𝕃s([x], @fun x->, []), Φ3 = { ... }
≡ 𝕃s([y], @fy, [-fy]), Φ4 = { ... , []x = [-fy]y } 𝕃s([1], @fy, [-f1]), Φ4 = { ... , []x = [-f1]y }

Comparison of stacks

Stack type Concrete stack Concrete stack Relative stack

Interpreter Concrete Concrete Symbolic

Direction Forward Backward Backward

Arrow main -> target main <- target main <- target

Value at main entry [] []

Value at target Can be non-empty Can be non-empty

Comparison of stacks

Stack type Concrete stack Concrete stack Relative stack

Interpreter Concrete Concrete Symbolic

Direction Forward Backward Backward

Arrow main -> target main <- target main <- target

Value at main entry [] [] [-f1]

Value at target Can be non-empty Can be non-empty []

Comparison of stacks

Stack type Concrete stack Concrete stack Relative stack

Interpreter Concrete Concrete Symbolic

Direction Forward Backward Backward

Arrow main -> target main <- target main <- target

Value at main entry [] as empty [] as empty [-f1]?[]

Value at target Can be non-empty Can be non-empty [] as unknown

Comparison of stacks

Stack type Concrete stack Concrete stack Relative stack

Interpreter Concrete Concrete Symbolic

Direction Forward Backward Backward

Arrow main -> target main <- target main <- target

Value at main entry [] as empty [] as empty [-f1]?[]

Value at target Can be non-empty Can be non-empty []?[]

Relative stack

● Push to the normal stack // rule (1)
● Pop from the empty normal stack, put into the co-stack // rule (2)
● Pop from the non-empty stack, it needs call-return alignment // rule (3)
● Safeguard: the normal stack must be empty when reaching the start // rule (4)

From concrete to symbolic
● 𝕃([xf1, xf2, ... , x], @xpp, [...]) ≡ v

○ Deterministic v (Lemma 3.4, at most one v s.t a proof can be constructed)
○ A reverse interpreter is sound and complete with respect to a forward one

■ Need to know the call stack
■ Need to sort the input order

● 𝕃s([xf1, xf2, ... , x], @xpp, [...]) , 𝕃(...) , 𝕃(...) ≡ sv over Φ
○ Nondeterministic

■ Not know the call stack
■ Not know the input

○ Φ equationally constraints variables, must be satisfiable

From concrete to symbolic, formally
● 𝕃s(X, Φ, Π, c, Ċ) ≡ sv

○ X := lookup stack

○ Φ := constraint formulae

○ Π := search path

○ c ::= program point

○ Ċ ::= relative stack

From concrete to symbolic, formally
● 𝕃s(X, Φ, Π, c, Ċ) ≡ sv

○ X := lookup stack

○ Φ := constraint formulae

○ Π := search path

○ c ::= program point

○ Ċ ::= relative stack

● Checking along the lookup
○ Φ is satisfiable

○ Π matches, a variable always points the same function in a nondeterministic trace

○ Ċ has a empty normal stack part

Lookup rules, symbolically

Lookup rules, symbolically

Outline
● Motivation
● Demand-driven functional interpreter
● Demand-driven symbolic evaluator
● Implementation

Implementation
● Artifact is a test generator: given program and target line, search for inputs

which reach the target line of code
● Initial proof-of-concept implementation in OCaml
● Benchmark from Scheme Larceny and P4F

○ Modify by adding input

● Benchmark from Satisfiability Modulo Bounded Checking, CADE ’17
○ Add function to behave like uninterpreted one

Implementation
● Artifact is a test generator: given program and target line, search for inputs

which reach the target line of code
● Initial proof-of-concept implementation in OCaml
● Benchmark from Scheme Larceny and P4F Thank you David!

○ Modify by adding input

● Benchmark from Satisfiability Modulo Bounded Checking, CADE ’17
○ Add function to behave like uninterpreted one

● Benchmark from Directed symbolic execution Thank you Mike!
○ Fully rewrite
○ Used in submissions before ICFP

Related Work
● Snugglebug, PLDI ’09

Imperative demand symbolic execution, no correctness
● Satisfiability Modulo Bounded Checking, CADE ’17:

Functional forward symbolic execution, no correctness proof, no input, no
unbounded recursion

● Rosette, PLDI ’14
a forward symbolic execution DSL; bounded datatypes only

● Our DDSE
This work: functional, demand, arbitrary datatypes and recursion, proven

Current status
● Adapting on JavaScript
● Optimization

○ Mutable states
○ Cached lookup, formally
○ Function summarization
○ Pick among the spectrum between pure computational and pure SMT solving

Questions & suggestions

